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2.2 Hodge theory

Let M be a closed oriented Riemannian manifold. For = € M, the metric on
M induces a metric on T M, thus a metric g on A¥T M for k < n := dim M.
Explicitly, let e!,-- -, €™ be an orthonormal basis of 7*M. Then e; € A*T*M
with I = {i; < --- < iz} forms an orthonormal basis of A*T* M. The volume
form is locally given by

vol :i=e' Ao A e (2.2.1)

Definition 2.2.1. The Hodge *-operator

* AFT*M — AT ™M (2.2.2)

is defined by
k(€A ANER) = Gi i o g €A A IR (2.2.3)
for {41, ik, 1, s Jnk} = {1,--- ,n}. In particular, we have *1 = vol

and *vol = 1.

Proposition 2.2.2. (1) for any «, 3 € A¥T*M, we have

aAxfB = g"a, ) vol (2.2.4)
(2) On A*T*M,
$2 = (—1)k=h), (2.2.5)
(3) The x-operator is an isometry:
g (xa, xB) = ¢"(a, B). (2.2.6)
(4) For a € A*T* M, we have
g, #8) = (10 Mg s, ). (227

Proof. For (1), by (2.2.3),
A A Ax(ET A A e)
= ETNANEF N N NednE =vol. (2.2.8)

For (2), by (2.2.3), we have

1y 50k, sJn—k

$2(eN A Ne™) =6,
- 5117“'7Zk7317"’7]n—k5]17“'7]71—]@77/17"'72]66 /\ /\ €

= (=) =Reit A A et (2.2.9)

o A J1A ... Jn—k
vy dng ¥ €N Ne
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For (3), by (2.2.5),
g" (xa, %8) vol = xar A %2 = (—1)’“(”_'“) xa AP =L0ANx*a
= ¢*(B, ) vol = ¢*(a, B) vol (2.2.10)
For (4), by (2.2.5) and (2.2.6),
g, x8) = g* (xa, ¥°B) = (=1)"" Pg(xa, §) (2.2.11)
The proof of our proposition is completed. O
Definition 2.2.3. We define an inner product on forms (-, -)g : QF(M,R) x

QOF(M,R) — R by

(o, )z ::/MgA(a,ﬁ)dv:/ o A #B. (2.2.12)

M

We denote by d* : Q*(M,R) — Q*1(M,R) the formal adjoint of d with
respect to (-, )g, i.e., for any a, 8 € Q*(M,R),

(da, B)r = (o, d*B)g. (2.2.13)

Proposition 2.2.4. On Q*(M),
d* = (=1)"F Dy gy (2.2.14)
Proof. By stokes’ formula and Proposition 2.2.2, for a € Q¥ 1(M,R),3 €

QF(M,R), we have

(da,ﬁ>R:/Md04/\*B:—(—1)k1/ aANdx* [

M

= (—1)kt=Dn=k+D) / aA2dx = (=1)"F D0 xd x B)g. (2.2.15)
M

The proof of our proposition is completed. O

Since d* = 0, by (2.2.13), we have
(d*)? = 0. (2.2.16)
We define the Laplace-Beltrami operator Ag by

Ag = (d+ d*)* = dd* + d*d. (2.2.17)
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Proposition 2.2.5. We have
ker(Ag) = ker(d) Nker(d"). (2.2.18)
Proof. The proposition follows from
(Ara, @) = ||dal|* + ||d* . (2.2.19)
The proof is completed. O

Theorem 2.2.6 (Hodge Theorem, real version). For any k € N, we have
the orthogonal decomposition, called the Hodge decomposition

QF (M) = ker(Ag|or) © Im(Ag|or) (2.2.20)
= ker(Ag|or) ® Im(d|qe-1) ® Im(d*|qes1) (2.2.21)

and the canonical isomorphism
ker(Ag|gr) ~ H*¥(M,R). (2.2.22)
FEspecially, the space ker(Ag|qr) is finite-dimensional.

Corollary 2.2.7 (Poincaré duality). The bilinear form | 1 @A B induces a
non-degenerate pairing

H*(M,R) x H"*(M,R) = R. (2.2.23)
In other words, we get
H*(M,R) ~ (H" (M, R))*. (2.2.24)

Proof. Take [a] € H*(M,R). Then by Hodge theorem, there exists a €
[a] such that a € ker(Ag|gr). Thus by Proposition 2.2.5, d*a = 0. By
Proposition 2.2.4, we have dxa = 0. If [, aAfB = 0for any g € H" *(M,R),
then [, |af*dv = [;, a Axa = 0. Thus [a] = 0.

The proof of the corollary is completed. O

Now we assume that M is a closed complex manifold with dim¢ M = n.
As usual, let g be a Riemannian metric on T'M. Then it could be C-linearly
extended on TM ® C. We denote by

T*PD N = AP(TEONM) @ AY(T*OD ). (2.2.25)
Then by (1.1.1)

AN(T*M @ C)= P TPIM. (2.2.26)

p+q=k
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From (1.2.12), the Riemannian metric g on TM induces a Hermitian
metric b on TW% M, thus a Hermitian metric 2* on T*®@ M. As in (1.2.12),
for o, p € QP9(M), we have

W e, B) = g*(a, B). (2.2.27)
We extend the Hodge x-operator C-linearly to
x: A¥(T*M ® C) — A* ™ (T*M @ C). (2.2.28)
By Definition 2.2.3, we have
0 T*PD N — THnmen=P) N (2.2.29)

As in Definition 2.2.3, we define the Hermitian inner product (-, -) : QP9(M) x
QP4(M) — C by

(a, B¢ ::/MhA(a,B)dv:/Ma/\*B. (2.2.30)

By Definition 2.2.3 and Proposition 2.2.4, since dimg M is even, we have
the following proposition.

Proposition 2.2.8. Let 0% and 0* be the formal adjoint of O and O respec-
tively. Then we have

d*=0"+ 0, (0°)? = (0")?=0. (2.2.31)
and
O =—%0x%, O =—x0x (2.2.32)
Definition 2.2.9. The Laplacians associated with 0 and 0 are defined as
Ay =(0+0")?=00"4+090, Aj=(0+0)*=0d0"+0"0. (2.2.33)
Clearly,
ANy, Ay : QPYM) — QPI(M). (2.2.34)

The following proposition is an analogue of Proposition 2.2.5. The proof
is the same.

Proposition 2.2.10. We have

ker(Ag) = ker(9) Nker(9%), ker(Ag) = ker(d) Nker(9*). (2.2.35)
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Theorem 2.2.11 (Hodge Theorem, complex version). Let M be a closed
complex manifold. Then we have two natural orthogonal decompositions

OPIYM) = ker(Aplara) @ Im(0|gr-1.4) & Im(0*|gp+1.a) (2.2.36)
and

OP9(M) = ker(Aglara) © Im(0|qra—1) & Tm(0*|gpatr ). (2.2.37)
The spaces ker(Ag|ar.a) and ker(Aglarq) are finite dimensional. And

ker(Ag|ara) >~ HPI(M), (2.2.38)

the (p, q)-Dolbeault cohomology.

Let E be a holomorphic vector bundle over M. In Definition 2.1.28, the
operator OF induces the Dolbeault cohomology group H*(M, E). Let h¥ be

a Hermitian metric on F. As in Definition 2.2.3, we define an inner product
on forms (-,-)g : Q¥(M, E) x Q%(M, E) — C by

(5.1 i /M BASE (5 1) dv. (2.2.39)

Here h*®F denotes by the Hermitian metric on A*(7*M ® C) ® E induced
by k" and h*. We denote by 9%+ : Q**(M, E) — Q**~'(M, E) the formal
adjoint of OF with respect to (-, -)g, i.e., for any s,t € Q*(M, E),

(0Fs,t)p = (s,0"*t) . (2.2.40)
As in (2.2.16), we have
(87%)* = 0. (2.2.41)

Definition 2.2.12. The Hermitian metric h* on F induces a C-anti-linear
isomorphism A : F ~ E*. The map

$p: T"PONM @ E — TP\ @ E* (2.2.42)
is defined by *p(a ® A) = *(a) @ hF(A).
With this notation, for s,t € T*P9 )M @ E,
PAOF (s 1) = s A xp(t), (2.2.43)

where ”A” is the exterior product in the form part and the evaluation map
E®E* — C in the bundle part. From Proposition 2.2.2 (2), on T*P9M ® E,

S 0Fp = (—1)PH. (2.2.44)
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Proposition 2.2.13. The formal adjoint operator
IF* = —Fp. 0 0¥ o Fp. (2.2.45)

Proof. For any holomorphic sections s = a®A € QP9(M, E) andt = fRA" €
Qrati(M, E),

(3,8E’*t)E:(8Es,t)E:/ 8Es/\>T<Et:/ da N+ @ A® h(A)
M M

/ (O(aA*BR AR KA)) — (1P a A d(x3 0 A h(A)))

M

dla AN+ @ A h(A)) — (—1)Ptett / aAO(xB® A®h(A)

M M

:_(_1)p+q+1/ S/\@E*(;Et):—/ SA%E*O>T<E*(§E<>T<Et)
M M )

= —(s,%g- 00" oxpt)p. (2.2.46)
The proof of our proposition is completed. O

Definition 2.2.14. The Laplacian associated with 0¥, which is called the
Kodaira-Laplacian, is defined as

0% = (9% + 07*)* = 90" + 9"*0" = [97,07"] . (2.2.47)

Theorem 2.2.15 (Hodge Theorem, holomorphic bundle version). Let M be
a closed complex manifold and E be a holomorphic vector bundle over M.
Then we have the orthogonal decomposition

Q% M, E) = ker((0%|qo.q) @ Im(0%|qo—1) @ Im(0F*|goar1).  (2.2.48)

The spaces ker((¥|qo.q) is finite dimensional. And
ker(O¥|qoq) ~ H*(M, E). (2.2.49)
Theorem 2.2.16 (Serre duality). Let M be a closed connected complex man-

ifold. For s € QUM E), t € Q"9 M, Ky @ E*) = Q""=9(M, E*), the
bilinear form fM s At induces a non-degenerate pairing

HYM,E)x H" (M, Ky ® E*) — C. (2.2.50)
In other words, we get

HY(M, E) ~ (H"™(M, Ky ® E))". (2.2.51)



20 CHAPTER 2. TOPOLOGY OF KAHLER MANIFOLDS

Proof. Take [a] € HY(M, E). Then by Hodge theorem, there exists o € [q]
such that a € ker([0¥|go.¢). Thus by Proposition 2.2.13, we have 0% % pa = 0.
If [,,NB=0forany 8 € H"9(M, Ky ® E*), then [, |o*dv = [, a A
kxpa = 0. Thus [a] = 0.

The proof of the theorem is completed. O

By taking E = T*®9 )M | we have

Corollary 2.2.17 (Serre duality). Let M be a closed connected complex
manifold. The bilinear form fM a A B induces a non-degenerate pairing

HP(M) x H*P" (M) — C. (2.2.52)
In other words, we get
HPAY(M) ~ (H" P4 M))". (2.2.53)

Remark that (2.2.51) is C-linear and does not depend on the metrics on
M and E.

Let V¥ be the Chern connection on E. Recall that (VZ)10 is the (1,0)-
part of V¥ defined in (1.2.25). We denote by (VZ)* and (V#)%* the formal
adjoints of V¥ and (VF)10 with respect to (,-)g in (2.2.39) respectively.

Recall that V is the connection defined in Proposition 1.2.14. Tt is a
connection on TM ® C and it preserves T M. We still denote by V the
induced connection on T'M. Then it preserves the metric on M. Let T be
the torsion of V. Then T € A*(T*M) ® TM is defined by

T(U,V)=VyV —-VyU—[UV], (2.2.54)

for vector fields U,V. Then T maps THOM @ THOM (vesp. TOYVM @
TOYNM) into THOM (resp. THOM) and vanish on THOM @ TOY M. In-
deed, for U = U;z2 € TOM, V = V;-.% € T"' M, we have

JBEJ‘
~ (1 ou; 0
U=vVE"MY =iy ™ "My = v 2.2.55
and
~ T = ov. 0
T(1,0) pf J
= VI = U, — 2.2.
VoV VU V =U; 92 %, (2.2.56)
Thus we have
VoV = VU = [U,V]. (2.2.57)

Let
VE=Vel+1a Ve (2.2.58)



2.2. HODGE THEORY o1

Lemma 2.2.18. Let {e;} be a locally orthonormal basis of TM and {e’} be
the duals. We have

L~ 1 .
VE =€l A Vf; + §g(T(ej, er),e)el A efie,, (2.2.59)

- 1
(VE)* = —iej A VeEJ — g(T(ej, €k), ekﬂej + —g(T(ej, Gk), 61)61 A iekiej-

2
(2.2.60)
Especially, if E = C, we have
.~ 1 )
d=¢e ANV + §g(T(ej, er), e)el A eFie,, (2.2.61)
~ 1
d* = —ic;, NV, — g(T(ej, ex), €x)ic, + 5g(T(ej, ex), €1)e’ Nigyie,.  (2.2.62)

Proof. We prove (2.2.61) first. We denote by d the right hand side of (2.2.61).
It is easy to see that for any homogeneous differential forms «, 3, we have

d(aAB) =daA B+ (—1)%E*a AdB. (2.2.63)

So we only need to show that d agrees with d on functions, which is clear,
and 1-forms. For any f € (M),

el A 6ejdf =el A ek<§e].df, er) =€ Ne¥(e;ler(f)) — (df, ﬁejek»
= %ej et (ejen(f)) = (df, Ve,en) — exle;(f) — (df, Ve, e;))
_ _%ea‘ AT (e, en),df). (2.2.64)

Thus d coincides with d on 1-forms. Thus we get (2.2.61).
For (2.2.59), let s =a® A € Q*(M, E). Then by (2.2.61),

Via® A) =da® A+ (—1)%a A VEA

.~ 1 )
=e A VeEj + §g(T(e]—, er),e)el A e, (2.2.65)

Now we prove (2.2.62). From the knowledge of differential geometry, for
any 0 € Q'(M), the function tr(V#0) is given by

tr(V0) = e;j(ale;)) — 0(Ve,e;). (2.2.66)
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Then we have

/ 62(V0)dv = 0. (2.2.67)
M
For a, 8 € Q*(M), take 6 = —g"(i.cx, 3). We have

tr(Va) = —e;(g" (ic,o0, B)) + gA(ivejeja,ﬁ). (2.2.68)

Since i, Ve, = Vo e, a0 — 05, 0,0 We have

g AVa,8) = ¢ (Ve,a,i,8) = e5(9M (a1, 8)) — g™ (e Vi, B)
= e; (g™ (i, 8)) — ¢*(a,ie, Ve, B) + QA(a,ieejejﬁ)
= —gMa,i, Ve, B) — tr(V0) — g(T(ex, €;), ¢;) g™ (,ie, B)  (2.2.69)
Thus

(7 AV,)" = —ie,Ve, — g(T(ej, ex), ex)ic, (2.2.70)

We get (2.2.62).
Using the same argument in (2.2.65), we get (2.2.60).
The proof of our lemma is completed. O

Let A be a ring and f,g : TM ® T*"M ® C — A be two linear maps.
Then from (1.1.18), we have

Z flegle) = Z (£(6")g(6:) + £(6")9(6s)) ,
. - (2.2.71)
Z flei)g(ei) = Z (f(ei)g(éi) + f(gi)g(gi)) .

By taking the (1,0)-part and the (0, 1)-part of (2.2.59) and (2.2.60) and
using (2.2.71), we have the following lemma.

Lemma 2.2.19. Let {0;}"_, be a local orthonormal frame of T M. Then
we have

_ - 1 _ o
0" = ' AV + S9(T(0;,0,),0)0 10"y, (2.2.72)

= . = 5N 1 SNE
oF* = —ig, \ ij — g(T(0;,0x), 0k )ig, + ig(T(Qj, 0),0,)0" A ig.la,, (2.2.73)
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.~ 1 _
(VO =07 AVY + 5g(:r(ej, 0),0,)07 A 0%ig,, (2.2.74)

= RV .
(VE>* = —Zgj A Vg; — g(T(HJ, Gk), ek)laj + §g<T(6], Gk), (91)91 A\ nglgj.
(2.2.75)

Let w be the real (1,1)-form associated with ¢ in (1.1.13).

Definition 2.2.20. We define the Lefschetz operator L = (wA) ® 1 on
A (T*M) ® E and its adjoint A = i(w) with respect to hA®E.

For {0;}7_, a local orthonormal frame of 7% M, by (1.1.13), we have
L=v=10" NOA, A =—v/—Ligig,. (2.2.76)
It is easy to see that
A=x"1oLox (2.2.77)

Definition 2.2.21. The holomorphic Kodaira Laplacian is defined by

E

E — [(VE)I’O, (VE)LO*] — (vE)l,O(vE>1,0* 4 (VE)I’O*(VE)LO. (2278)
The Hermitian torsion operator is defined by
T = [A, 0w] = [i(w), Ow]. (2.2.79)

Theorem 2.2.22 (Generalized Kéhler identities).

[0%*, L] = V-1 (V") +T), (2.2.80)
(V)Y L] = —V/=1(0"+T), (2.2.81)
[A,07] = —V=1((VE)"" +T7), (2.2.82)
(A (VA =V-1 (5’1* + 7’“) : (2.2.83)

(0%, L] = [(V")"0, L] = [A,0%%] = [A, (V)] =0. (2.2.84)
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Proof. Note that (2.2.82) and (2.2.83) are the adjoints of (2.2.80) and (2.2.81).
We only need to prove the first two formulas.
From (2.2.73),

(07, L) = = |ig, A VE L] = 9(T(6;,60),00) [ig,, L]
9(T(0;,0k),0,) [0 Nig,ig, L] . (2.2.85)
By (2.2.76),
lig,, L] = —V/—=167 A (2.2.86)
Also by (2.2.76),
(Vi L] = V=1(V4,0%) AO* A +V/=10% A (Vy,0%)A
= V=1( = g(Vo,00,0,) — 9(61,V,0,))0' ANGEA = 0. (2.2.87)
Thus by (2.2.86) and (2.2.87),
~ |ig, AVE L] = = [ig, L] A VE = V=16 A VE. (2.2.88)
From (2.2.86), we have
0" Nigig,, L) = 0" A ([ig,, L] ig, + g, [ig,» L])
= —V=10" (0" Nig, +ig,07) . (2.2.89)
Thus,
(07", L] = V=16 AV +V/=1g(T(0;,04), 01,)¢"
+V—=1g(T(0;,0k),0)6" NG Nig,. (2.2.90)
From (2.2.87), we see that Vw = 0. By (2.2.74), we have

1 . V=1 =\ a
Ow = Sg(T(0;,00), )0 N 0%igw = =——g(T(6;,06¢), 06" N 6" AT
(2.2.91)

So from (2.2.90), since [A, 7] = —v/—Tig, and [A, 7] = —/—Tiy, we have

1 _ _ .
T = 5g(T(ej, Or),00) (20" N O' Nig — 2630 — 07 ANO* Nig) . (2.2.92)
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By (2.2.74), (2.2.90) and (2.2.92), we get (2.2.80).

As the computation is local, we can choose a locally holomorphic frame
of E to reduce the proof of (2.2.81) to the case that E is a trivial bundle.
Then (2.2.81) follows from (2.2.80) by conjugation.

The formula (2.2.84) follows directly from the Leibniz’s rule.

The proofs of the generalized Kéhler identities are completed. O

For super-commutator
[B,C] = BC — (-1)BI€lC B, (2.2.93)
where | - | is the degree, the Jacobi identity reads

(~DMI[A4, [B,CI) + (~1)1#1[B, €, Al + (~1)#1C, [4, B]) = 0.
(2.2.94)

Theorem 2.2.23 (Bochner-Kodaira-Nakano formula).
07 =0° + V=1[RZ, Al + (V)0 T — 0%, T ). (2.2.95)
Proof. From Theorem 2.2.22, (1.2.28), (2.2.47), (2.2.78) and (2.2.94), we have
OF = [9%,057) = —v/=1 [0, [A, (V%)) - |9°, 7|
= —V=1[A, [(V9)'0,07]] = V=T [(V9)'*, [0, A]] - [9%. 7]
— V=LA RE] + [(VE)S, (VE)H0] + [(95)1, 7] - |9°,7|.
(2.2.96)
The proof of our theorem is complete. 0

Now we assume that (M,w) is Kéhler.
Theorem 2.2.24. Assume that (M,w) is Kdhler. Then
(0%, L] =+v—10, [0%, L] =—v—-19, [\, J]=—V-10",
Mo =vTI, [0.5] = (0.0 = [AF] = (A0 =0,
O0F =8° + VZ1[RE,A], A =20, =27, (2.2.97)

Proof. By Proposition 1.2.14 and (2.2.12), if (M,w) is Kéhler, 7 = 0. Thus
we only need to prove the last formula.
By Theorem 2.2.22, we have

0,07] = —v/=1[0, [A, 9] = OAD — A + NS> —OAD = 0.  (2.2.98)
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Thus

Ag = —[d,d"] = [0+ 8,0 + 8] = Ay + Ay + 9, 5] + [, 8]
=20y =205, (2.2.99)

The proof of our theorem is completed. O

The following theorem is the direct consequence of Theorem 2.2.22 and
2.2.24.

Theorem 2.2.25. Assume that (M,w) is Kdhler. We denote by A := Ay =
2Deltag. Then
(1) Hk(M7 (C) = @p+q:k HP#I(M);
(2) HP9(M) =~ H*P(M) and Serre duality yields H?(M) ~ H""P"=9(M)*;
(3) A commutes with ,0,0,0%, 0%, L and A.

Since Ao * = x o A and *> = (—1)?~9 the Hodge *-map induces an
isomorphism

0 HPO(M) = H" " P(]]). (2.2.100)

Theorem 2.2.26 (90-lemma). Let M be a compact Kihler manifold. Then
for a d-closed form « of type (p,q), the following conditions are equivalent:
(1) The form « is d-ezact, i.e., a = df for some 3 € QPTITL(M,C).

(2) The form « is D-exact, i.e., « = A for some € QP~H4(M).
(8) The form « is O-ezact, i.e., a = B for some 3 € QPI~H(M).
(4) The form « is 00-exact, i.e., a = OB for some B € QP~H=L(M).

Proof. 1t is obvious that (4) implies (1), (2) and (3). By Hodge theory, if
any of (1), (2) and (3) holds, we see that « is orthogonal to ker(A). Since
a is d-closed, it is O-closed and O-closed. Since alImd*, we have o = 9.
Now we use the Hodge decomposition with respect to 0 to the form ~. Then
v = 0B+ 0*B' + " for some harmonic form B”. Thus, a = 008 + 00*3'. By
(2.2.98), we have 90* = —9*0. Thus

|00 B'||> = ||0*08'||* = (0008, 08") = (0003 — Do, 0B') = 0. (2.2.101)

We have o = 905.
The proof is completed. O



